AVFD Studies for Au+Au and Isobar Collisions

Ryan Milton arXiv: 2110.01435 October 15, 2021

$\Delta \gamma_{112}$ observable in different systems

- AVFD events same as those used in the STAR technical paper, arXiv:2105.06044
- True signal illustrated with curves
 - $\circ \quad \mbox{Given by } \Delta\gamma_{112}^{\mbox{CME}} = \Delta\gamma_{112} \Delta\gamma_{112}|_{n_5/s=0}$
 - Same as $\frac{1}{2}(a_{1,+}^2 + a_{1,-}^2) a_{1,+}a_{1,-}$
- True signal w.r.t. RP is a bit larger in the isobar collisions than Au+Au
 - Although isobar has weaker B, the dilution effect (∝ multiplicity) that reduces signal is smaller
 - Can also be seen for background at n₅/s = 0
- True signal w.r.t. PP are reduced for both systems
 - This effect is larger for isobars due to smaller system size

2

Using CME Fraction, f_{CME}

• Use CME fraction to quantify how much of the $\Delta \gamma_{112}$ signal is due to the CME

 $f_{\rm CME} = {\rm True}/\Delta\gamma_{112}$

- Using RP, the true signal is similar in all systems, but the background is larger in isobars
 - \circ $f_{\rm CME}$ slightly smaller for isobars
- Using PP greatly reduces f_{CME} for the isobars compared to Au+Au
 - \circ Smaller isobaric systems have fluctuations with larger $v_2,$ leading to more background signal
 - PP is less correlated with **B** than RP, and this effect is much stronger in isobar
 - Consistent with the observations in Y. Feng, Y.F. Lin, J. Zhao and F. Wang, Phys. Lett. B 820, 136549 (2021).

Diagram of Collisions

- Magnetic field perpendicular to the RP
 - Generated by incident protons
- Ψ_{RP} approximated by spectator plane in experiment
 - Determined by sideward deflection of spectators (red/blue)
- Ψ_{PP} defined by the initial density distribution of the participants (green)